Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Pain ; 7: 100039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909296

RESUMO

Previous studies have shown that oral administration of the NMDAR modulator NYX-2925 alleviates pain in several animal models of neuropathic pain and this appears to be through mPFC, but not spinal, mediated mechanisms. While much is known about the impact of neuropathic pain on NMDAR-mediated signaling in the spinal cord, limited studies have focused on the brain. In the current study, we assess signaling changes associated with NMDAR-mediated plasticity in the mPFC and the impact of NYX-2925 administration on the normalization of these signaling changes. We found a decrease in activated Src levels in the mPFC of animals with chronic constriction injury (CCI) of the sciatic nerve. While Src mediated activation of NMDARs was also decreased in CCI animals, the main NMDAR phosphorylation site of CAMKII was not affected. This is in opposition to what has been found in the spinal cord, where both Src and CAMKII activation are increased. Oral administration of NYX-2925 restored levels of activated Src and Src phosphorylation sites on GluN2A and GluN2B in the mPFC, with no effect on activated CAMKII levels. The analgesic effect of NYX-2925 appears dependent on this restoration of Src activation in the mPFC, as co-administering Src activation inhibitors prevented the NYX-2925 analgesic effect. Overall, these data suggest that NMDAR-mediated signaling plays a key role in neuropathic pain, albeit in different directions in the spinal cord vs. the mPFC. Furthermore, the analgesic effect of NYX-2925 appears to involve a restoration of NMDAR-mediated signaling in the mPFC.

2.
Neurobiol Pain ; 5: 100024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31194015

RESUMO

Brain-derived neurotrophic factor (BDNF) signaling through its cognate receptor, TrkB, is a well-known promoter of synaptic plasticity at nociceptive synapses in the dorsal horn of the spinal cord. Existing evidence suggests that BDNF/TrkB signaling in neuropathic pain is sex dependent. We tested the hypothesis that the effects of BDNF/TrkB signaling in hyperalgesic priming might also be sexually dimorphic. Using the incision postsurgical pain model in male mice, we show that BDNF sequestration with TrkB-Fc administered at the time of surgery blocks the initiation and maintenance of hyperalgesic priming. However, when BDNF signaling was blocked prior to the precipitation of hyperalgesic priming with prostaglandin E2 (PGE2), priming was not reversed. This result is in contrast to our findings in male mice with interleukin-6 (IL6) as the priming stimulus where TrkB-Fc was effective in reversing the maintenance of hyperalgesic priming. Furthermore, in IL6-induced hyperalgesic priming, the BDNF sequestering agent, TrkB-fc, was effective in reversing the maintenance of hyperalgesic priming in male mice; however, when this experiment was conducted in female mice, we did not observe any effect of TrkB-fc. This markedly sexual dimorphic effect in mice is consistent with recent studies showing a similar effect in neuropathic pain models. We tested whether the sexual dimorphic role for BDNF was consistent across species. Importantly, we find that this sexual dimorphism does not occur in rats where TrkB-fc reverses hyperalgesic priming fully in both sexes. Finally, to determine the source of BDNF in hyperalgesic priming in mice, we used transgenic mice (Cx3cr1CreER  × Bdnfflx/flx mice) with BDNF eliminated from microglia. From these experiments we conclude that BDNF from microglia does not contribute to hyperalgesic priming and that the key source of BDNF for hyperalgesic priming is likely nociceptors in the dorsal root ganglion. These experiments demonstrate the importance of testing mechanistic hypotheses in both sexes in multiple species to gain insight into complex biology underlying chronic pain.

3.
Front Cell Neurosci ; 12: 29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467623

RESUMO

Plasticity in dorsal root ganglion (DRG) neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5' cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF) signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A ) and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.

4.
Neuroscience ; 359: 119-129, 2017 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-28729062

RESUMO

New therapeutics to manage post-surgical pain are needed to mitigate the liabilities of opioid and other analgesics. Our previous work shows that key modulators of excitability in peripheral nociceptors, such as extracellular signal-regulated kinases (ERK) are inhibited by activation of adenosine monophosphate activated protein kinase (AMPK). We hypothesized that AMPK activation would attenuate acute incision-evoked mechanical hypersensitivity and the development of hyperalgesic priming caused by surgery in mice. Here we have used a variety of administration routes and combinations of AMPK activators to test this hypothesis. Topical administration of a resveratrol-based cream inhibited acute mechanical hypersensitivity evoked by incision and blocked the development of hyperalgesic priming. We also observed that systemic administration of metformin dose-dependently inhibited incision-evoked mechanical hypersensitivity and hyperalgesic priming. Interestingly, low doses of systemic metformin and local resveratrol that had no acute effect were able to mitigate development of hyperalgesic priming. Combined treatment with doses of systemic metformin and local resveratrol that were not effective on their own enhanced the acute efficacy of the individual AMPK activators for post-surgical mechanical pain alleviation and blocked the development of hyperalgesic priming. Finally, we used dorsal root ganglion (DRG) neurons in culture to show that resveratrol and metformin given in combination shift the concentration-response curve for AMPK activation to the left and increase the magnitude of AMPK activation. Therefore, we find that topical administration is an effective treatment route of administration and combining systemic and local treatments led to anti-nociceptive efficacy in acute mechanical hypersensitivity at doses that were not effective alone. Collectively our work demonstrates a specific effect of AMPK activators on post-surgical pain and points to novel therapeutic opportunities with potential immediate impact in the clinical setting.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Analgésicos/administração & dosagem , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/metabolismo , Neurônios/efeitos dos fármacos , Dor/metabolismo , Animais , Células Cultivadas , Hiperalgesia/prevenção & controle , Masculino , Metformina/administração & dosagem , Camundongos Endogâmicos ICR , Dor/complicações , Dor/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Complicações Pós-Operatórias/tratamento farmacológico , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/administração & dosagem
5.
J Neurosci ; 37(31): 7481-7499, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28674170

RESUMO

Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4ES209A ). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF- and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2-/- mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2-/- mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a debilitating disease affecting approximately one in three Americans. Chronic pain is thought to be driven by changes in the excitability of peripheral nociceptive neurons, but the precise mechanisms controlling these changes are not elucidated. Emerging evidence demonstrates that mRNA translation regulation pathways are key factors in changes in nociceptor excitability. Our work demonstrates that a single phosphorylation site on the 5' cap-binding protein eIF4E is a critical mechanism for changes in nociceptor excitability that drive the development of chronic pain. We reveal a new mechanistic target for the development of a chronic pain state and propose that targeting the upstream kinase, MAPK interacting kinase 1/2, could be used as a therapeutic approach for chronic pain.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Dor Crônica/fisiopatologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , Plasticidade Neuronal , Nociceptividade , Animais , Dor Crônica/etiologia , ATPases Transportadoras de Cobre , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor Nociceptiva/etiologia , Dor Nociceptiva/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
6.
PLoS One ; 12(1): e0169882, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28118359

RESUMO

Voltage-gated sodium channels (VGSC) regulate neuronal excitability by governing action potential (AP) generation and propagation. Recent studies have revealed that AMP-activated protein kinase (AMPK) activators decrease sensory neuron excitability, potentially by preventing sodium (Na+) channel phosphorylation by kinases such as ERK or via modulation of translation regulation pathways. The direct positive allosteric modulator A769662 displays substantially greater efficacy than other AMPK activators in decreasing sensory neuron excitability suggesting additional mechanisms of action. Here, we show that A769662 acutely inhibits AP firing stimulated by ramp current injection in rat trigeminal ganglion (TG) neurons. PT1, a structurally dissimilar AMPK activator that reduces nerve growth factor (NGF) -induced hyperexcitability, has no influence on AP firing in TG neurons upon acute application. In voltage-clamp recordings, application of A769662 reduces VGSC current amplitudes. These findings, based on acute A769662 application, suggest a direct channel blocking effect. Indeed, A769662 dose-dependently blocks VGSC in rat TG neurons and in Nav1.7-transfected cells with an IC50 of ~ 10 µM. A769662 neither displayed use-dependent inhibition nor interacted with the local anesthetic (LA) binding site. Popliteal fossa administration of A769662 decreased noxious thermal responses with a peak effect at 5 mins demonstrating an analgesic effect. These data indicate that in addition to AMPK activation, A769662 acts as a direct blocker/modulator of VGSCs, a potential mechanism enhancing the analgesic property of this compound.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Analgésicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Pironas/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Tiofenos/farmacologia , Anestésicos Locais/metabolismo , Animais , Sítios de Ligação/genética , Compostos de Bifenilo , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Temperatura Alta/efeitos adversos , Humanos , Masculino , Metformina/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Condução Nervosa/efeitos dos fármacos , Dor/tratamento farmacológico , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Resveratrol , Células Receptoras Sensoriais/enzimologia , Estilbenos/farmacologia , Tiazóis/farmacologia , Gânglio Trigeminal/efeitos dos fármacos , meta-Aminobenzoatos/farmacologia
7.
Exp Suppl ; 107: 257-285, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812984

RESUMO

Chronic pain is a major clinical problem that is poorly treated with available therapeutics. Adenosine monophosphate-activated protein kinase (AMPK) has recently emerged as a novel target for the treatment of pain with the exciting potential for disease modification. AMPK activators inhibit signaling pathways that are known to promote changes in the function and phenotype of peripheral nociceptive neurons and promote chronic pain. AMPK activators also reduce the excitability of these cells suggesting that AMPK activators may be efficacious for the treatment of chronic pain disorders, like neuropathic pain, where changes in the excitability of nociceptors is thought to be an underlying cause. In agreement with this, AMPK activators have now been shown to alleviate pain in a broad variety of preclinical pain models indicating that this mechanism might be engaged for the treatment of many types of pain in the clinic. A key feature of the effect of AMPK activators in these models is that they can lead to a long-lasting reversal of pain hypersensitivity even long after treatment cessation, indicative of disease modification. Here, we review the evidence supporting AMPK as a novel pain target pointing out opportunities for further discovery that are likely to have an impact on drug discovery efforts centered around potent and specific allosteric activators of AMPK for chronic pain treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Analgésicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neuralgia/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Dor Crônica/enzimologia , Dor Crônica/genética , Dor Crônica/patologia , Neuropatias Diabéticas/enzimologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/patologia , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Inflamação , Canais Iônicos/genética , Canais Iônicos/metabolismo , Terapia de Alvo Molecular , Morfina/uso terapêutico , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Neuralgia/enzimologia , Neuralgia/genética , Neuralgia/patologia , Nociceptores/efeitos dos fármacos , Nociceptores/enzimologia , Nociceptores/patologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transdução de Sinais
8.
Pain Rep ; 1(1)2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27672681

RESUMO

There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K) / mechanistic target of rapamycin (mTOR) signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate activated protein kinase (AMPK) can inhibit signaling in both of these pathways and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG) neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased MAPK signaling, decreased nascent protein synthesis and enhanced P body formation. R419 attenuates nerve growth factor-(NGF) induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of post-surgical pain and blocks the development of hyperalgesic priming to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

9.
Pain ; 157(6): 1314-1324, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26859820

RESUMO

Plasticity in inhibitory receptors, neurotransmission, and networks is an important mechanism for nociceptive signal amplification in the spinal dorsal horn. We studied potential changes in GABAergic pharmacology and its underlying mechanisms in hyperalgesic priming, a model of the transition from acute to chronic pain. We find that while GABAA agonists and positive allosteric modulators reduce mechanical hypersensitivity to an acute insult, they fail to do so during the maintenance phase of hyperalgesic priming. In contrast, GABAA antagonism promotes antinociception and a reduction in facial grimacing after the transition to a chronic pain state. During the maintenance phase of hyperalgesic priming, we observed increased neuroligin (nlgn) 2 expression in the spinal dorsal horn. This protein increase was associated with an increase in nlgn2A splice variant mRNA, which promotes inhibitory synaptogenesis. Disruption of nlgn2 function with the peptide inhibitor, neurolide 2, produced mechanical hypersensitivity in naive mice but reversed hyperalgesic priming in mice previously exposed to brain-derived neurotrophic factor. Neurolide 2 treatment also reverses the change in polarity in GABAergic pharmacology observed in the maintenance of hyperalgesic priming. We propose that increased nlgn2 expression is associated with hyperalgesic priming where it promotes dysregulation of inhibitory networks. Our observations reveal new mechanisms involved in the spinal maintenance of a pain plasticity and further suggest that disinhibitory mechanisms are central features of neuroplasticity in the spinal dorsal horn.


Assuntos
Dor Aguda/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Dor Crônica/metabolismo , Neurônios GABAérgicos/metabolismo , Hiperalgesia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Medula Espinal/metabolismo , Dor Aguda/fisiopatologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Dor Crônica/fisiopatologia , Modelos Animais de Doenças , Neurônios GABAérgicos/efeitos dos fármacos , Hiperalgesia/fisiopatologia , Camundongos , Camundongos Endogâmicos ICR , Plasticidade Neuronal/efeitos dos fármacos , Limiar da Dor/fisiologia , Medula Espinal/efeitos dos fármacos
10.
Br J Pharmacol ; 172(18): 4535-4545, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26140338

RESUMO

BACKGROUND AND PURPOSE: Proteinase-activated receptor-2 (PAR2) is a GPCR linked to diverse pathologies, including acute and chronic pain. PAR2 is one of the four PARs that are activated by proteolytic cleavage of the extracellular amino terminus, resulting in an exposed, tethered peptide agonist. Several peptide and peptidomimetic agonists, with high potency and efficacy, have been developed to probe the functions of PAR2, in vitro and in vivo. However, few similarly potent and effective antagonists have been described. EXPERIMENTAL APPROACH: We modified the peptidomimetic PAR2 agonist, 2-furoyl-LIGRLO-NH2 , to create a novel PAR2 peptidomimetic ligand, C391. C391 was evaluated for PAR2 agonist/antagonist activity to PAR2 across Gq signalling pathways using the naturally expressing PAR2 cell line 16HBE14o-. For antagonist studies, a highly potent and specific peptidomimetic agonist (2-aminothiazo-4-yl-LIGRL-NH2 ) and proteinase agonist (trypsin) were used to activate PAR2. C391 was also evaluated in vivo for reduction of thermal hyperalgesia, mediated by mast cell degranulation, in mice. KEY RESULTS: C391 is a potent and specific peptidomimetic antagonist, blocking multiple signalling pathways (Gq -dependent Ca2+ , MAPK) induced following peptidomimetic or proteinase activation of human PAR2. In a PAR2-dependent behavioural assay in mice, C391 dose-dependently (75 µg maximum effect) blocked the thermal hyperalgesia, mediated by mast cell degranulation. CONCLUSIONS AND IMPLICATIONS: C391 is the first low MW antagonist to block both PAR2 Ca2+ and MAPK signalling pathways activated by peptidomimetics and/or proteinase activation. C391 represents a new molecular structure for PAR2 antagonism and can serve as a basis for further development for this important therapeutic target.

11.
J Neurosci ; 35(16): 6307-17, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904784

RESUMO

The mechanisms that lead to the maintenance of chronic pain states are poorly understood, but their elucidation could lead to new insights into how pain becomes chronic and how it can potentially be reversed. We investigated the role of spinal dorsal horn neurons and descending circuitry in plasticity mediating a transition to pathological pain plasticity suggesting the presence of a chronic pain state using hyperalgesic priming. We found that when dorsal horn neurokinin 1 receptor-positive neurons or descending serotonergic neurons were ablated before hyperalgesic priming, IL-6- and carrageenan-induced mechanical hypersensitivity was impaired, and subsequent prostaglandin E2 (PGE2) response was blunted. However, when these neurons were lesioned after the induction of priming, they had no effect on the PGE2 response, reflecting differential mechanisms driving plasticity in a primed state. In stark contrast, animals with a spinally applied dopaminergic lesion showed intact IL-6- and carrageenan-induced mechanical hypersensitivity, but the subsequent PGE2 injection failed to cause mechanical hypersensitivity. Moreover, ablating spinally projecting dopaminergic neurons after the resolution of the IL-6- or carrageenan-induced response also reversed the maintenance of priming as assessed through mechanical hypersensitivity and the mouse grimace scale. Pharmacological antagonism of spinal dopamine D1/D5 receptors reversed priming, whereas D1/D5 agonists induced mechanical hypersensitivity exclusively in primed mice. Strikingly, engagement of D1/D5 coupled with anisomycin in primed animals reversed a chronic pain state, consistent with reconsolidation-like effects in the spinal dorsal horn. These findings demonstrate a novel role for descending dopaminergic neurons in the maintenance of pathological pain plasticity.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Células do Corno Posterior/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D5/fisiologia , Receptores da Neurocinina-1/fisiologia , Animais , Benzazepinas/farmacologia , Carragenina/farmacologia , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Interleucina-6/farmacologia , Masculino , Camundongos , Células do Corno Posterior/efeitos dos fármacos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/antagonistas & inibidores , Neurônios Serotoninérgicos/fisiologia , Sulpirida/farmacologia
12.
Mol Pain ; 10: 45, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24993495

RESUMO

Transcriptional regulation of genes by cyclic AMP response element binding protein (CREB) is essential for the maintenance of long-term memory. Moreover, retrograde axonal trafficking of CREB in response to nerve growth factor (NGF) is critical for the survival of developing primary sensory neurons. We have previously demonstrated that hindpaw injection of interleukin-6 (IL-6) induces mechanical hypersensitivity and hyperalgesic priming that is prevented by the local injection of protein synthesis inhibitors. However, proteins that are locally synthesized that might lead to this effect have not been identified. We hypothesized that retrograde axonal trafficking of nascently synthesized CREB might link local, activity-dependent translation to nociceptive plasticity. To test this hypothesis, we determined if IL-6 enhances the expression of CREB and if it subsequently undergoes retrograde axonal transport. IL-6 treatment of sensory neurons in vitro caused an increase in CREB protein and in vivo treatment evoked an increase in CREB in the sciatic nerve consistent with retrograde transport. Importantly, co-injection of IL-6 with the methionine analogue azido-homoalanine (AHA), to assess nascently synthesized proteins, revealed an increase in CREB containing AHA in the sciatic nerve 2 hrs post injection, indicating retrograde transport of nascently synthesized CREB. Behaviorally, blockade of retrograde transport by disruption of microtubules or inhibition of dynein or intrathecal injection of cAMP response element (CRE) consensus sequence DNA oligonucleotides, which act as decoys for CREB DNA binding, prevented the development of IL-6-induced mechanical hypersensitivity and hyperalgesic priming. Consistent with previous studies in inflammatory models, intraplantar IL-6 enhanced the expression of BDNF in dorsal root ganglion (DRG). This effect was blocked by inhibition of retrograde axonal transport and by intrathecal CRE oligonucleotides. Collectively, these findings point to a novel mechanism of axonal translation and retrograde trafficking linking locally-generated signals to long-term nociceptive sensitization.


Assuntos
Transporte Axonal/efeitos dos fármacos , Proteína de Ligação a CREB/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/farmacologia , Dor Nociceptiva/induzido quimicamente , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Transporte Axonal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Colchicina/farmacologia , Modelos Animais de Doenças , Gânglios Espinais/patologia , Interleucina-6/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dor Nociceptiva/patologia , Nocodazol/farmacologia , Transporte Proteico/efeitos dos fármacos , Quinazolinonas/farmacologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/metabolismo , Moduladores de Tubulina/farmacologia
13.
PLoS One ; 9(6): e99140, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24927179

RESUMO

Protease-activated receptor-2 (PAR2) is a G-Protein Coupled Receptor (GPCR) activated by proteolytic cleavage to expose an attached, tethered ligand (SLIGRL). We evaluated the ability for lipid-tethered-peptidomimetics to activate PAR2 with in vitro physiological and Ca2+ signaling assays to determine minimal components necessary for potent, specific and full PAR2 activation. A known PAR2 activating compound containing a hexadecyl (Hdc) lipid via three polyethylene glycol (PEG) linkers (2at-LIGRL-PEG3-Hdc) provided a potent agonist starting point (physiological EC50 = 1.4 nM; 95% CI: 1.2-2.3 nM). In a set of truncated analogs, 2at-LIGR-PEG3-Hdc retained potency (EC50 = 2.1 nM; 1.3-3.4 nM) with improved selectivity for PAR2 over Mas1 related G-protein coupled receptor type C11, a GPCR that can be activated by the PAR2 peptide agonist, SLIGRL-NH2. 2at-LIG-PEG3-Hdc was the smallest full PAR2 agonist, albeit with a reduced EC50 (46 nM; 20-100 nM). 2at-LI-PEG3-Hdc retained specific activity for PAR2 with reduced EC50 (310 nM; 260-360 nM) but displayed partial PAR2 activation in both physiological and Ca2+ signaling assays. Further truncation (2at-L-PEG3-Hdc and 2at-PEG3-Hdc) eliminated in vitro activity. When used in vivo, full and partial PAR2 in vitro agonists evoked mechanical hypersensitivity at a 15 pmole dose while 2at-L-PEG3-Hdc lacked efficacy. Minimum peptidomimetic PAR2 agonists were developed with known heterocycle substitutes for Ser1 (isoxazole or aminothiazoyl) and cyclohexylalanine (Cha) as a substitute for Leu2. Both heterocycle-tetrapeptide and heterocycle-dipeptides displayed PAR2 specificity, however, only the heterocycle-tetrapeptides displayed full PAR2 agonism. Using the lipid-tethered-peptidomimetic approach we have developed novel structure activity relationships for PAR2 that allows for selective probing of PAR2 function across a broad range of physiological systems.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Receptor PAR-2/agonistas , Receptor PAR-2/genética , Animais , Células CHO , Células Cultivadas , Cricetulus , Masculino , Camundongos , Camundongos Endogâmicos ICR , Peptidomiméticos , Proto-Oncogene Mas , Relação Estrutura-Atividade
14.
J Pain ; 15(4): 395-406, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24412803

RESUMO

UNLABELLED: Peripheral nerve injury (PNI) negatively influences spinal gamma-aminobutyric acid (GABA)ergic networks via a reduction in the neuron-specific potassium-chloride (K(+)-Cl(-)) cotransporter (KCC2). This process has been linked to the emergence of neuropathic allodynia. In vivo pharmacologic and modeling studies show that a loss of KCC2 function results in a decrease in the efficacy of GABAA-mediated spinal inhibition. One potential strategy to mitigate this effect entails inhibition of carbonic anhydrase activity to reduce HCO3(-)-dependent depolarization via GABAA receptors when KCC2 function is compromised. We have tested this hypothesis here. Our results show that, similarly to when KCC2 is pharmacologically blocked, PNI causes a loss of analgesic effect for neurosteroid GABAA allosteric modulators at maximally effective doses in naïve mice in the tail-flick test. Remarkably, inhibition of carbonic anhydrase activity with intrathecal acetazolamide rapidly restores an analgesic effect for these compounds, suggesting an important role of carbonic anhydrase activity in regulating GABAA-mediated analgesia after PNI. Moreover, spinal acetazolamide administration leads to a profound reduction in the mouse formalin pain test, indicating that spinal carbonic anhydrase inhibition produces analgesia when primary afferent activity is driven by chemical mediators. Finally, we demonstrate that systemic administration of acetazolamide to rats with PNI produces an antiallodynic effect by itself and an enhancement of the peak analgesic effect with a change in the shape of the dose-response curve of the α1-sparing benzodiazepine L-838,417. Thus, carbonic anhydrase inhibition mitigates the negative effects of loss of KCC2 function after nerve injury in multiple species and through multiple administration routes resulting in an enhancement of analgesic effects for several GABAA allosteric modulators. We suggest that carbonic anhydrase inhibitors, many of which are clinically available, might be advantageously employed for the treatment of pathologic pain states. PERSPECTIVE: Using behavioral pharmacology techniques, we show that spinal GABAA-mediated analgesia can be augmented, especially following nerve injury, via inhibition of carbonic anhydrases. Carbonic anhydrase inhibition alone also produces analgesia, suggesting these enzymes might be targeted for the treatment of pain.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Neuralgia/metabolismo , Receptores de GABA-A/metabolismo , Medula Espinal/metabolismo , Acetazolamida/farmacologia , Animais , Anidrases Carbônicas/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos
15.
Pain ; 154(7): 1080-91, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23607966

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) inhibitors are extensively used as immunosuppressants to prevent transplant rejection and in treatment of certain cancers. In patients, chronic treatment with rapamycin or its analogues (rapalogues) has been reported to lead to sensory hypersensitivity and pain conditions via an unknown mechanism. Here, we show that pharmacological or genetic inhibition of mTORC1 activates the extracellular signal-regulated kinase (ERK) pathway in sensory neurons via suppression of S6K1 to insulin receptor substrate 1 negative feedback loop. As a result, increased ERK activity induces sensory neuron sensitization, mechanical hypersensitivity, and spontaneous pain. The clinically available adenosine monophosphate-activated protein kinase activator, metformin, which is an antidiabetic drug, prevents rapamycin-induced ERK activation and the development of mechanical hypersensitivity and spontaneous pain. Taken together, our findings demonstrate that activation of the ERK pathway in sensory neurons as a consequence of mTORC1 inhibition leads to the development of pain. Importantly, this effect is abolished by co-treatment with metformin, thus providing a potential treatment option for rapalogue-evoked pain. Our findings highlight the physiological relevance of feedback signaling through mTORC1 inhibition and have important implications for development of pain therapeutics that target the mTOR pathway.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Regulação para Baixo , Ativação Enzimática , Retroalimentação Fisiológica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Dor/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos
16.
Mol Pain ; 9: 12, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23510079

RESUMO

BACKGROUND: Chronic pain is an important medical problem affecting hundreds of millions of people worldwide. Mechanisms underlying the maintenance of chronic pain states are poorly understood but the elucidation of such mechanisms have the potential to reveal novel therapeutics capable of reversing a chronic pain state. We have recently shown that the maintenance of a chronic pain state is dependent on an atypical PKC, PKMζ, but the mechanisms involved in controlling PKMζ in chronic pain are completely unknown. Here we have tested the hypothesis that brain derived neurotrophic factor (BDNF) regulates PKMζ, and possibly other aPKCs, to maintain a centralized chronic pain state. RESULTS: We first demonstrate that although other kinases play a role in the initiation of persistent nociceptive sensitization, they are not involved in the maintenance of this chronic pain state indicating that a ZIP-reversible process is responsible for the maintenance of persistent sensitization. We further show that BDNF plays a critical role in initiating and maintaining persistent nociceptive sensitization and that this occurs via a ZIP-reversible process. Moreover, at spinal synapses, BDNF controls PKMζ and PKCλ nascent synthesis via mTORC1 and BDNF enhances PKMζ phosphorylaton. Finally, we show that BDNF signaling to PKMζ and PKCλ is conserved across CNS synapses demonstrating molecular links between pain and memory mechanisms. CONCLUSIONS: Hence, BDNF is a key regulator of aPKC synthesis and phosphorylation and an essential mediator of the maintenance of a centralized chronic pain state. These findings point to BDNF regulation of aPKC as a potential therapeutic target for the permanent reversal of a chronic pain state.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Dor Crônica/enzimologia , Proteína Quinase C/metabolismo , Sinapses/enzimologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/patologia , Dor Crônica/patologia , Fator de Iniciação 4F em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/enzimologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Transporte Proteico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
17.
FASEB J ; 27(4): 1498-510, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23292071

RESUMO

Protease-activated receptor-2 (PAR2) is a G-protein coupled receptor (GPCR) associated with a variety of pathologies. However, the therapeutic potential of PAR2 is limited by a lack of potent and specific ligands. Following proteolytic cleavage, PAR2 is activated through a tethered ligand. Hence, we reasoned that lipidation of peptidomimetic ligands could promote membrane targeting and thus significantly improve potency and constructed a series of synthetic tethered ligands (STLs). STLs contained a peptidomimetic PAR2 agonist (2-aminothiazol-4-yl-LIGRL-NH2) bound to a palmitoyl group (Pam) via polyethylene glycol (PEG) linkers. In a high-throughput physiological assay, these STL agonists displayed EC50 values as low as 1.47 nM, representing a ∼200 fold improvement over the untethered parent ligand. Similarly, these STL agonists were potent activators of signaling pathways associated with PAR2: EC50 for Ca(2+) response as low as 3.95 nM; EC50 for MAPK response as low as 9.49 nM. Moreover, STLs demonstrated significant improvement in potency in vivo, evoking mechanical allodynia with an EC50 of 14.4 pmol. STLs failed to elicit responses in PAR2(-/-) cells at agonist concentrations of >300-fold their EC50 values. Our results demonstrate that the STL approach is a powerful tool for increasing ligand potency at PAR2 and represent opportunities for drug development at other protease activated receptors and across GPCRs.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Palmitatos/farmacologia , Peptidomiméticos/farmacologia , Receptor PAR-2/agonistas , Cálcio/metabolismo , Linhagem Celular/efeitos dos fármacos , Humanos , Hiperalgesia/tratamento farmacológico , Ligantes , Ornitina/análogos & derivados , Ornitina/farmacologia , Relação Estrutura-Atividade
18.
J Pain ; 13(6): 546-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22537560

RESUMO

UNLABELLED: Spinal gamma-aminobutyric acid receptor type A (GABA(A)) receptor modulation with agonists and allosteric modulators evokes analgesia and antinociception. Changes in K(+)-Cl(-) cotransporter isoform 2 (KCC2) expression or function that occur after peripheral nerve injury can result in an impairment in the Cl(-) extrusion capacity of spinal dorsal horn neurons. This, in turn, alters Cl(-)-mediated hyperpolarization via GABA(A) receptor activation, contributing to allodynia or hypersensitivity associated with nerve injury or inflammation. A gap in knowledge exists concerning how this loss of spinal KCC2 activity differentially impacts the analgesic efficacy or potency of GABA(A) agonists and allosteric modulators. We utilized intrathecal drug administration in the tail flick assay to measure the analgesic effects of general GABA(A) agonists muscimol and Z-3-[(aminoiminomethyl)thio]prop-2-enoic acid (ZAPA), the ∂-subunit-preferring agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP), and allosteric modulators of the benzodiazepine (midazolam) and neurosteroid (ganaxolone) class, alone or in the presence of K(+)-Cl(-) cotransporter isoform (KCC) blockade. Intrathecal muscimol, ZAPA, THIP midazolam, and ganaxolone all evoked significant analgesia in the tail flick test. Coadministration of either agonists or allosteric modulators with [(dihydroindenyl)oxy] alkanoic acid (DIOA) (a drug that blocks KCC2) had no effect on agonist or allosteric modulator potency. On the other hand, the analgesic efficacy of muscimol and ZAPA and the allosteric modulator ganaxolone were markedly reduced whereas THIP and midazolam were unaffected. Finally, in the spared nerve injury model, midazolam significantly reversed tactile hypersensitivity while ganaxolone had no effect. These results indicate that the KCC2-dependent Cl(-) extrusion capacity differentially regulates the analgesic efficacy of agonists and allosteric modulators at the GABA(A) receptor complex. PERSPECTIVE: Our work suggests that drug discovery efforts for the treatment of chronic pain disorders should target benzodiazepine or ∂-subunit-containing sites at the GABA(A) complex.


Assuntos
Analgésicos/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Neuralgia/metabolismo , Receptores de GABA-A/metabolismo , Simportadores/metabolismo , Analgesia , Animais , Benzodiazepinas/farmacologia , Cloretos/metabolismo , Isoxazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Muscimol/farmacologia , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/metabolismo , Pregnanolona/análogos & derivados , Pregnanolona/farmacologia , Nervo Isquiático/lesões
19.
Mol Pain ; 8: 5, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22269797

RESUMO

BACKGROUND: Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK) may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors. RESULTS: To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6) is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment. CONCLUSIONS: These results highlight the importance of signaling to translation control in peripheral sensitization of nociceptors and provide further evidence for activation of AMPK as a novel treatment avenue for acute and chronic pain states.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dor Aguda/tratamento farmacológico , Dor Crônica/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Receptoras Sensoriais/enzimologia , Estilbenos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Dor Aguda/enzimologia , Dor Aguda/patologia , Animais , Dor Crônica/enzimologia , Dor Crônica/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fator de Iniciação 4F em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Hiperalgesia/complicações , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Interleucina-6/administração & dosagem , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dor Pós-Operatória/complicações , Dor Pós-Operatória/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Resveratrol , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Tempo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/patologia
20.
Mol Pain ; 7: 70, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21936900

RESUMO

Neuropathic pain is a debilitating clinical condition with few efficacious treatments, warranting development of novel therapeutics. We hypothesized that dysregulated translation regulation pathways may underlie neuropathic pain. Peripheral nerve injury induced reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity, increased phosphorylation of mTOR and ERK downstream targets, augmented eIF4F complex formation and enhanced nascent protein synthesis. The AMP activated protein kinase (AMPK) activators, metformin and A769662, inhibited translation regulation signaling pathways, eIF4F complex formation, nascent protein synthesis in injured nerves and sodium channel-dependent excitability of sensory neurons resulting in a resolution of neuropathic allodynia. Therefore, injury-induced dysregulation of translation control underlies pathology leading to neuropathic pain and reveals AMPK as a novel therapeutic target for the potential treatment of neuropathic pain.


Assuntos
Terapia de Alvo Molecular , Neuralgia/tratamento farmacológico , Neuralgia/enzimologia , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Potenciais de Ação/efeitos dos fármacos , Animais , Western Blotting , Modelos Animais de Doenças , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Fator de Iniciação 4F em Eucariotos/biossíntese , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuralgia/fisiopatologia , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...